Bagaimana apabila kecepatan lepas sebuah objek mencapai atau bahkan melebihi kecepatan cahaya? Objek seperti inilah yang kita namakan lubang hitam. Medan gravitasi objek seperti ini sangat ekstrim sehingga untuk bisa lepas dari tarikan gravitasinya kita membutuhkan kecepatan cahaya atau bahkan lebih besar dari kecepatan cahaya untuk bisa keluar dari sana. Karena tidak ada objek yang dapat bergerak melebihi kecepatan cahaya
maka praktis tidak ada partikel apapun yang bisa lolos dari lubang hitam kalau sudah memasuki jarak tertentu dari lubang hitam.Apakah lubang hitam itu? Setiap objek yang punya massa di alam semesta akan punya sebuah besaran bernama kecepatan lepas (escape velocity). Kecepatan lepas adalah kecepatan sebuah objek agar bisa lolos dari tarikan gravitasi sebuah objek. Sebagai contoh, kecepatan lepas dari permukaan Bumi adalah sekitar 40.000 km/jam. Artinya, apabila kita ingin lolos dari tarikan gravitasi Bumi, maka dari permukaan tanah kita harus mampu meloncat dengan kecepatan sebesar 40.000 km/jam.
Andaikan kita punya objek dengan massa M, maka kita bisa menghitung jari-jari sebuah bola yang mengungkung massa M tersebut, agar objek tersebut menjadi lubang hitam. Jari-jari ini kita namakan Radius Schwarzschild (yap, cobalah mengucapkan nama ini dalam percobaan pertama), dinamakan menurut fisikawan asal Jerman, Karl Schwarzschild. Dengan demikian, kita juga dapat mendefinisikan lubang hitam sebagai sebuah objek bermassa M yang seluruh massa objek tersebut berada di dalam radius Schwarzschild-nya.
Berapa radius Schwarzschild Bumi, apabila kita ingin mengubah Bumi menjadi sebuah lubang hitam? Kita dapat menghitung bahwa seluruh massa Bumi (Massa Bumi = 5.97 x 1024 kg) harus dipadatkan menjadi bola dengan jari-jari 9 milimeter saja. Ini adalah jari-jari yang hanya sebesar kelereng. Kecil sekali, namun mengandung seluruh massa Bumi.
Apabila misalnya kita ingin menjadikan Matahari sebuah lubang hitam, maka seluruh massa Matahari (Massa Matahari = 2 x 1030 kg) harus dipadatkan ke dalam bola dengan jari-jari 3 kilometer saja. Bola dengan garis tengah 6 kilometer ini, apabila titik pusatnya kita tempatkan di tengah-tengah Lapangan Monas di Jakarta, maka akan mencakup daerah dari Jalan Mangga Besar hingga Taman Suropati. Tidak terlalu besar, namun di dalamnya seluruh massa Matahari. Bayangkan.
Bila kita berada di dekat lubang hitam
Apa yang terjadi apabila sebuah objek berada di sekitar sebuah lubang hitam? Jawabannya adalah: tergantung pada jarak objek tersebut dari lubang hitam. Kita mengamati adanya bintang-bintang yang mengorbit lubang hitam supermasif yang berada di pusat Galaksi kita, dan kita mengamati pula banyak sistem ganda di mana satu pasangannya adalah sebuah lubang hitam dan yang satu lagi adalah bintang normal. Orbit objek-objek ini stabil meskipun mereka mengorbit lubang hitam. Artinya, apabila kita berada pada jarak yang aman maka kita dapat mengorbit sebuah lubang hitam sebagaimana kita mengorbit objek-objek normal lainnya.
Jarak aman di mana kita masih dapat mengorbit lubang hitam dalam orbit berbentuk lingkaran adalah 1.5 kali radius Schwarzschild lubang hitam tersebut. Namun, apabila kita berada pada jarak yang sangat dekat dari lubang hitam tersebut, maka kita akan bergerak dalam orbit berbentuk spiral mendekati lubang hitam tersebut, hingga kita mencapai radius Schwarzschild lubang hitam tersebut. Radius Schwarzschild sering disebut juga sebagai “batasan di mana tidak ada jalan untuk kembali” karena pada radius ini, kecepatan lepas akan sama dengan kecepatan cahaya sehingga semua yang masuk akan terperangkap. Batasan tersebut disebut juga sebagai horison peristiwa (atau event horizon dalam Bahasa Inggris) yang berada pada permukaan bola yang jari-jarinya sama dengan radius Schwarzschild.
Dengan demikian Matahari dan Bumi kita tidak akan terpengaruh sama sekali dengan keberadaan lubang supermasif di pusat Galaksi kita. Apabila seandainya Matahari tiba-tiba berubah menjadi lubang hitam tanpa ada perubahan massa (Matahari tidak akan bisa menjadi lubang hitam karena massa Matahari masih terlalu kecil. Dalam proses evolusinya Matahari akan berubah menjadi bintang katai putih), apa yang akan terjadi pada orbit Bumi? Jawabannya: Orbit Bumi tidak akan berubah sama sekali karena massa Matahari tidak berubah. Kita aan tetap melenggang kangkung mengorbit Matahari. Memang suasana akan lebih gelap karena sinar Matahari sudah tidak ada lagi tapi paling tidak kita masih mengorbit Matahari.
Mendekati horison peristiwa
Apabila seorang astronot dikirim dari kapsulnya untuk mendekati horison peristiwa (event horizon) yang melingkupi sebuah lubang hitam, maka ia akan mulai dipercepat bergerak menuju ke arah horison peristiwa tersebut. Semakin mendekati horison peristiwa, semakin kecil kemungkinan ia dapat lolos dari lubang hitam. Saat ketika ia memasuki horison peristiwa adalah saat ketika ia tidak dapat lagi kembali. Ada dua efek yang terjadi pada kita dalam perjalanan menuju horison peristiwa ini. Efek pertama adalah terjadinya perubahan jalannya waktu yang dialami si astronot dengan kapsul induknya yang berada jauh dari lubang hitam. Andaikan si astronot kita bekali lampu senter dan kita suruh ia menyinari kapsul induknya dengan seberkas sinar lampu senter setiap satu detik sekali. Kita lalu mengamati dengan aman dari kapsul kita. Semakin si astronot mendekati horison peristiwa, kita mengamati bahwa jeda waktu kita menerima berkas sinar semakin lama dari satu detik, padahal astronot kita terus-menerus menyorotkan sinar lampu setiap satu detik sekali. Sinar lampu senter juga semakin lama semakin kemerahan dan meredup.
Pada akhirnya kita tak lagi dapat mengamati berkas sinar dari astronot tersebut. Hal ini karena medan gravitasi yang dilewati astronot kita semakin kuat dan oleh karena itu mendistorsikan kurva ruang-waktu. Distorsi ruang-waktu pada daerah di sekitar horison peristiwa akan membuat jalannya waktu yang diamati si astronot akan berbeda dengan yang kita amati. Ketika sudah mencapai horison peristiwa, seberkas sinar yang dipancarkan dari titik itu akan membutuh waktu tak hingga untuk mencapai kita, dan oleh karena itu tak lagi dapat kita amati. Namun, bagi si astronot waktu akan tetap berjalan seperti biasa…
Efek kedua yang akan dialami si astronot malang kita terjadi karena gaya gravitasi yang mempengaruhi demikian kuatnya, sehingga gaya gravitasi yang ia alami di kaki akan jauh lebih besar daripada yang dialami kepalanya. Akibatnya tubuh si astronot akan memanjang akibat efek ini dan semakin mendekati lubang hitam, efek ini akan semakin menguat hingga akhirnya… yah astronot malang kita akan terobek oleh gravitasi yang demikian hebatnya. Di mana persisnya proses “spagetifikasi” (atau biasa juga disebut efek bakmi) ini bergantung pada massa dari lubang hitam itu sendiri. Pada lubang hitam supermasif, kita dapat memasuki horison peristiwa tanpa mengalami proses spagetifikasi dan akan mengalaminya kemudian saat sudah berada di dalam horison peristiwa. Pada lubang hitam yang lebih kecil, efek bakmi sudah terasa bahkan sebelum kita memasuki horison peristiwa.
Begitu kita masuk ke dalam horison peristiwa, materi penyusun tubuh kita akan menyatu dengan seluruh massa lubang hitam. Dengan demikian, objek apapun yang masuk ke dalam horison peristiwa akan menyatu dengan lubang hitam dan demikian massanya total lubang hitam tersebut akan bertambah.
Singularitas
Di pusat setiap lubang hitam terdapat titik yang dinamakan titik singularitas, yaitu titik di mana kepadatan massa dan kurvatur ruang-waktu bernilai tak hingga. Pada titik ini hukum-hukum fisika yang kita ketahui tidak lagi bekerja. Pada titik singularitas terjadi penyatuan gaya-gaya fundamental di alam semesta. Karena kita tidak mengetahui seperti apa bentuk perpaduan tersebut, maka kita tak dapat menjelaskan apa yang terjadi pada titik singularitas lubang hitam.
Bila kita sudah dapat menjelaskan bagaimana cara bekerjanya gravitasi pada skala subatomik, yaitu teori yang dinamakan teori gravitasi kuantum, maka diharapkan kita akan dapat menjelaskan apa yang terjadi pada titik singularitas.
Pembentukan lubang hitam
Bagaimana lubang hitam bisa terbentuk? Lubang hitam seukuran bintang terbentuk ketika sebuah bintang masif (masif di sini maksudnya ia punya massa 25 kali massa Matahari kita atau lebih). Ketika bintang tersebut kehabisan bahan bakar untuk menahan tarikan gravitasinya sendiri, maka bintang masif tersebut akan runtuh ke arah pusatnya. Sebagian dari materi bintang yang tidak ikut membentuk materi bintang akan terlontar kembali ke ruang angkasa dalam wujud ledakan bintang yang dinamakan supernova. Pada akhirnya, lubang hitam yang terbentuk akan memiliki massa beberapa kali massa Matahari kita.
Selain itu kita juga mengenal lubang hitam supermasif. Dari namanya kita bisa mengetahui kalau lubang hitam yang satu ini sangat masif, punya gaya gravitasi yang sangat kuat, dan biasanya hidup di pusat galaksi. Bagaimana sebuah lubang hitam supermasif bisa terbentuk? Berbeda dengan lubang hitam yang massanya kecil, pembentukan dan evolusi lubang hitam supermasif masih menjadi misteri yang terus dicari jawabannya.
Ada beberapa teori yang dikembangkan untuk menjelaskan pembentukan lubang hitam supermasif. Salah satunya adalah bahwa lubang hitam supermasif terbentuk dari lubang hitam generasi awal yang kemudian bertumbuh menjadi besar setelah melahap bintang dan gas yang ada di sekelilingnya. Perlu diingat, persediaan materi di daerah pusat galaksi sangatlah banyak sehingga dapat membantu pertumbuhan lubang hitam yang terbentuk tersebut. Skenario lainnya, lubang hitam supermasif juga bisa terbentuk dari penggabungan lubang hitam yang menjadi inti galaksi-galaksi kecil saat galaksi-galaksi tersebut saling bertabrakan. Hal ini jamak terjadi di masa lalu alam semesta ketika ukuran alam semesta lebih kecil dari sekarang dan interaksi antargalaksi lebih sering terjadi.
Bergabungnya dua lubang hitam. Kredit: STScI