Senin, 25 November 2013

Obituari Vitaly Ginzburg (1916 – 2009): Superkonduktivitas dan partikel kosmik

Ahli fisika Rusia, Vitaly Ginzburg, meninggal dunia dalam usia 93 pada tanggal 8 November 2009. Lahir pada tahun 1916, Ginzburg berarti telah hidup dalam tiga periode sejarah Rusia: zaman sekaratnya Tsar Rusia, periode pemerintahan komunis Uni Soviet, dan masa Federasi Rusia. Di antara kehidupannya yang panjang ia juga telah diganjar Hadiah Nobel Fisika (dibagi bersama Alexei Abrikosov dan Tony Legget)


pada tahun 2003 atas kontribusinya pada teori superkonduktor. Karier panjang Ginzburg di dunia fisika merambah berbagai cabang. Untuk menyebut beberapa: superkonduktivitas, teori sinar kosmis, teori mengenai emisi pulsar, radiasi sinkrotron, sinyal radio dari matahari, dan bidang-bidang lainnya.

Pengetahuan teoritis Ginzburg mengenai ilmu fisika diterapkannya terutama dalam dua fenomena yang paling banyak digelutinya: superkonduktivitas dan sinar kosmis. Perilaku superkonduktivitas sudah ditemukan semenjak tahun 1911 oleh fisikawan Heike Kamerlingh Onnes di Negeri Belanda. Keadaan ini muncul apabila sebuah benda didinginkan hingga mencapai suhu mendekati nol mutlak (0 Kelvin atau sama dengan -273 derajat Celsius), benda tersebut akan kehilangan perlawanannya terhadap aliran listrik. 

Aliran listrik tidak akan banyak mengalami hambatan dan dengan demikian menghantarkan listrik dengan baik. Objek ini juga kehilangan medan magnetik internalnya. Suhu ketika benda-benda menjadi superkonduktor berbeda-beda berdasarkan jenis bahannya. Seng, misalnya, menjadi superkonduktor pada suhu 0.88 Kelvin sementara keramik sintesis yang mengandung Tembaga dan Barium dapat menjadi konduktor pada suhu yang lebih tinggi pada 125 Kelvin. Dengan merendam bahan-bahan ini di dalam Helium cair (Helium-3 mendidih pada suhu 3.2 Kelvin) atau Nitrogen cair (mendidih pada suhu 77 Kelvin. Bandingkan dengan air yang mendidih pada 373 Kelvin).

Struktur penghubung atom-atom benda padat dapat digambarkan sebagai sebuah kisi-kisi yang bergetar. 
Untuk memahami kenapa sebuah benda dapat kehilangan resistensinya pada aliran listrik, kita perlu menggambarkan benda padat sebagai kumpulan atom-atom yang terhubung satu sama lain oleh kisi-kisi. Kisi-kisi ini juga bergetar dan kecepatan getarnya ditentukan oleh suhu benda tersebut. Semakin tinggi suhunya, semakin cepat getarannya dan semakin rendah suhunya semakin lambat getarannya. 

Aliran listrik adalah aliran elektron yang berusaha melewati kisi-kisi ini dengan aman. Dapat dibayangkan, apabila kisi-kisi tersebut bergetar cepat maka kemungkinannya besar sekali elektron akan menabrak atom dan kehilangan energinya yang kemudian akan berubah menjadi panas. Aliran listrik menjadi tidak terlalu lancar karena ada yang hilang sebagian. Objek yang seperti demikian berarti memiliki resistensi yang tinggi terhadap listrik dan bukan sebuah konduktor yang baik. Namun bila objek yang sama ini didinginkan maka getaran antara kisi tidak akan terlalu hebat dan kemungkinan elektron yang lewat akan bertabrakan menjadi lebih kecil. Selain bergantung pada suhu, resistensi juga bergantung pada struktur kisi-kisi sebuah bahan. Itulah sebabnya ada bahan yang dapat menjadi konduktor yang baik sementara bahan lain tidak bisa menjadi konduktor.


Efek Meissner: sebuah magnet yang diletakkan di atas sebuah superkonduktor akan melayang di atasnya. 
Fenomena “aneh” lain yang terkait dalam superkonduktor adalah ia dapat menolak keberadaan medan magnet. Akibatnya akan timbul fenomena yang disebut Efek Meissner atau sering disebut juga levitasi magnetik. 

Magnet yang ditaruh di atas sebuah superkonduktor akan melayang di atasnya karena medan magnet tidak dapat menembus bahan superkonduktor dan akibatnya harus “mengalir” di atas superkonduktor. Efek ini dapat diterus dipertahankan selama suhu bahan dijaga tetap dibawah suhu kritis tertentu (nilainya berbeda-beda tergantung bahan yang digunakan. Beberapa bahan bisa mencapai superkonduktivitas pada suhu 90 Kelvin atau -183 derajat Celsius).

Ahli fisika ingin mengetahui mengapa bahan-bahan yang didinginkan bisa berperilaku demikian. Dalam teori elektrodinamika klasik (teori listrik-magnet yang dikembangkan oleh James Clerk Maxwell pada akhir abad ke-19) kita dapat mengandaikan suatu benda “konduktor sempurna,” namun perilaku superkonduktivitas ternyata tidak dapat dipahami begitu saja oleh teori klasik. Gambaran mengenai kisi-kisi yang bergetar lemah apabila didinginkan ternyata memprediksikan penurunan resistensi yang lebih lambat apabila dibandingkan dengan realitas yang diukur melalui eksperimen. Dibutuhkan penjelasan lain yang lebih memuaskan dan ternyata ini adalah fenomena dalam ranah mekanika kuantum, sebuah teori yang mendeskripsikan dunia subatomik.


Vitaly Ginzburg pada tahun 1947, usia 31 tahun.
Vitaly Ginzburg masuk Universitas Negeri Moskow pada tahun 1933 dan lulus lima tahun kemudian. Gelar Doktor diperolehnya pada tahun 1942. Kariernya dimulai sebagai eksperimentalis dalam bidang optika, namun ia kemudian menyadari bahwa bakat sebenarnya berada di bidang teori. Ia kemudian mulai mengerjakan masalah-masalah penting dalam berbagai bidang fisika dan astrofisika. Kontribusinya dalam teori superkonduktivitas dikerjakannya bersama rekannya sebangsa, Lev Davidovich Landau. Teori ini kemudian disebut sebagai Teori Ginzburg-Landau dan merupakan sebuah teori fenomenologi.
Comments
0 Comments

Tidak ada komentar:

Related Posts Plugin for WordPress, Blogger...
Home
Reload page